ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression.
نویسندگان
چکیده
Previous genetic studies in Sphingomonas macrogolitabida strain TFA have established that expression of genes involved in tetralin biodegradation (thn genes) requires the function of the LysR type activator ThnR and also ThnY. Sequence comparison indicated that ThnY is homologous to bacterial oxygenase-coupled NAD(P)H-dependent ferredoxin reductases. However, ThnY showed substitutions in highly conserved positions of the pyridine nucleotide binding domain of these ferredoxin reductases. ThnY expression is co-regulated with all other genes required for tetralin biodegradation, and presumably thnY is part of the thnCA3A4RY operon. ThnY has been purified, and its biochemical and functional properties were characterized. ThnY was found to be a monomeric orange-brown iron-sulfur flavoprotein (estimated mass of 37,000 Da) containing one non-covalently attached flavin adenine dinucleotide and one plant type ferredoxin 2Fe-2S cluster. It can be efficiently reduced by dithionite, but reduction by pyridine nucleotides was very poor. Consistently, ThnY-dependent reduction of cytochrome c, ferricyanide, or 2,6-dichlorophenolindophenol using NAD(P)H as the electron donor was undetectable or very weak. The addition of ThnY to electrophoretic mobility shift assays containing ThnR and a probe bearing two thn divergent promoters resulted in a 3-fold increase in protein-DNA complex formation affinity, which indicates that ThnY directly promotes thn transcription activation by ThnR.
منابع مشابه
The Ferredoxin ThnA3 Negatively Regulates Tetralin Biodegradation Gene Expression via ThnY, a Ferredoxin Reductase That Functions as a Regulator of the Catabolic Pathway
The genes for tetralin (thn) utilization in Sphingomonasmacrogolitabida strain TFA are regulated at the transcriptional level by ThnR, ThnY and ThnA3. ThnR, a LysR-type transcriptional activator activates transcription specifically in response to tetralin, and ThnY is an iron-sulfur flavoprotein that may activate ThnR by protein-protein interaction. ThnA3, a Rieske-type ferredoxin that transfer...
متن کاملRedox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes.
Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H-ThnA4-ThnA3-ThnA1/ThnA2 electron tran...
متن کاملSTIMULATION OF OXYGEN UPTAKE OF FERREDOXIN-NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE REDUCTASE-FERREDOXIN COMPLEX BY CYTOCHROME c*
The rate of oxygen uptake of spinach ferredoxin-NADP reductase-ferredoxin complex is increased up to ZO-fold by the addition of cytochrome c. Initiation of epinephrine and sulfite oxidation indicated an involvement of the superoxide anion radical in the stimulated oxidase reaction. The final product of the reaction was shown to be Hz0 instead of HsOt, which is the product of the flavoprotein-ca...
متن کاملDiscovery and characterization of the first archaeal dihydromethanopterin reductase, an iron-sulfur flavoprotein from Methanosarcina mazei.
The microbial production of methane by methanogenic archaea is dependent on the synthesis of the pterin-containing cofactor tetrahydromethanopterin (H4MPT). The enzyme catalyzing the last step of H4MPT biosynthesis (dihydromethanopterin reductase) has not previously been identified in methane-producing microorganisms. Previous complementation studies with the methylotrophic bacterium Methylobac...
متن کاملNovel functions of an iron-sulfur flavoprotein from Trichomonas vaginalis hydrogenosomes.
Iron-sulfur flavoproteins (Isf) are flavin mononucleotide (FMN)- and FeS cluster-containing proteins commonly encountered in anaerobic prokaryotes. However, with the exception of Isf from Methanosarcina thermophila, which participates in oxidative stress management by removing oxygen and hydrogen peroxide, none of these proteins has been characterized in terms of function. Trichomonas vaginalis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 3 شماره
صفحات -
تاریخ انتشار 2011